Doctors
Mr. Victory Akhimien
Doctors
Ms. Ffion L
Doctors
Prof. Paul Lee
Treatments
back surgery
Treatments
Cartilage Regeneration
Treatments
Knee Cartilage
8 results found in 5ms
  • ‹‹
  • 1
  • ››
Comprehensive Guide to Knee Cartilage Repair: Non-Surgical and Surgical Options
avatar
Ms. Ffion L
4/8/2024
Comprehensive Guide to Knee Cartilage Repair: Non-Surgical and Surgical Options
Discover essential insights into understanding and repairing knee cartilage damage, from non-surgical methods like physical therapy and medications to advanced surgical options. Learn about the significance of early diagnosis, effective treatment plans, and post-treatment rehabilitation to enhance knee joint function and alleviate pain. Explore tips for preventing future knee issues,Discover essential insights into understanding and repairing knee cartilage damage, from non-surgical methods like physical therapy and medications to advanced surgical options. Learn about the significance of early diagnosis, effective treatment plans, and post-treatment rehabilitation to enhance knee joint function and alleviate pain. Explore tips for preventing future knee issues, including maintaining a healthy weight and using the best supplements for osteoarthritis. Stay informed about symptoms, recovery times, and when to seek medical advice to ensure optimal knee health and improved quality of life.
Optimising Meniscus Implants: SolidWorks Simulation for Enhanced Durability and SafetyOptimising Meniscus Implants: SolidWorks Simulation for Enhanced Durability and Safety
SolidWorks Simulation is a powerful tool for designing and testing meniscus implants. This article provides a step-by-step guide on how to use SolidWorks Simulation for meniscus implants, including modeling the implant, selecting the right material, setting up the simulation parameters, meshing, conducting material tests, and running the simulation. The resultsSolidWorks Simulation is a powerful tool for designing and testing meniscus implants. This article provides a step-by-step guide on how to use SolidWorks Simulation for meniscus implants, including modeling the implant, selecting the right material, setting up the simulation parameters, meshing, conducting material tests, and running the simulation. The results of the simulation can be analyzed to ensure the safety and accuracy of the implant design. Additionally, the article answers frequently asked questions about interpreting simulation results, optimizing implant designs, gaining regulatory approvals, and choosing the right implant material. SolidWorks Simulation is a valuable tool that can help ensure the precision and durability of meniscus implants.
Maintaining an Active Golfing Lifestyle: Exploring Advanced Surgical Options for Knee Injuries
avatar
Prof. Paul Lee
21/1/2024
Maintaining an Active Golfing Lifestyle: Exploring Advanced Surgical Options for Knee Injuries
If you're a golfer experiencing knee pain, the thought of major surgery can be daunting. However, Professor Paul Lee, a Consultant Orthopaedic Surgeon at London Cartilage Clinic, assures that with the latest regeneration techniques, golfers can return to the course within days. Golf may be low-impact, but it still carriesIf you're a golfer experiencing knee pain, the thought of major surgery can be daunting. However, Professor Paul Lee, a Consultant Orthopaedic Surgeon at London Cartilage Clinic, assures that with the latest regeneration techniques, golfers can return to the course within days. Golf may be low-impact, but it still carries risks, with up to 18% of golfers having sustained knee injuries. Meniscus tears are a common knee injury among golfers, but early diagnosis and treatment can lead to swift recovery. Professor Lee specializes in advanced surgical techniques, including partial knee resurfacing, which allows for quicker recovery and retains natural knee movement. With expert care at London Cartilage Clinic, golfers can get back to the sport they love.
Microfracture Doom to FailMicrofracture Doom to Fail
Microfracture surgery, commonly used to repair damaged knee cartilage, is often questioned for its long-term success. This article explores why microfracture surgery fails and discusses alternatives for cartilage repair such as autologous chondrocyte implantation (ACI), mosaicplasty, and mesenchymal stromal cells. The limitations of microfracture surgery include the body's struggle toMicrofracture surgery, commonly used to repair damaged knee cartilage, is often questioned for its long-term success. This article explores why microfracture surgery fails and discusses alternatives for cartilage repair such as autologous chondrocyte implantation (ACI), mosaicplasty, and mesenchymal stromal cells. The limitations of microfracture surgery include the body's struggle to balance between durable healing and repeated injury, resulting in the breakdown of repair tissue over time. Additionally, the articular cartilage's limited capacity to heal leads to pain recurrence and post-traumatic arthritis. Long-term outcomes vary, with a risk of osteoarthritis progression in older patients. Alternatives like ACI and mosaicplasty show promise, although ACI has a high reoperation rate. Mesenchymal stromal cells are also being considered for enhancing cartilage repair.
Medicolegal Implications of Microfracture Surgery in Cartilage Repair: An In-depth Q&A
avatar
Prof. Paul Lee
30/12/2023
Medicolegal Implications of Microfracture Surgery in Cartilage Repair: An In-depth Q&A
Microfracture surgery is a minimally invasive procedure used to treat knee cartilage damage. However, its long-term efficacy and outcomes have sparked controversy. Compared to newer techniques like autologous chondrocyte implantation, microfracture may produce less durable repair tissue. Surgeons need to consider the patient's specific cartilage damage, potential for success, andMicrofracture surgery is a minimally invasive procedure used to treat knee cartilage damage. However, its long-term efficacy and outcomes have sparked controversy. Compared to newer techniques like autologous chondrocyte implantation, microfracture may produce less durable repair tissue. Surgeons need to consider the patient's specific cartilage damage, potential for success, and limitations of the procedure before performing it. Medicolegally, it is important to fully inform patients about the procedure and document thorough consent. It is crucial for patients to have a realistic understanding of what the surgery can and cannot achieve. Microfracture may be more suitable for younger patients with smaller, well-contained cartilage lesions. The future of cartilage repair surgery lies in techniques that regenerate hyaline cartilage more effectively. Insurance providers are increasingly scrutinizing the evidence behind various surgical techniques, potentially impacting coverage decisions
Unveiling the Truth About Microfracture Surgery: Your Questions Answered
avatar
Prof. Paul Lee
29/12/2023
Unveiling the Truth About Microfracture Surgery: Your Questions Answered
Is microfracture surgery still a viable option for cartilage repair in modern orthopedics? This article addresses common questions about microfracture surgery, including its limitations, long-term outcomes, and suitability for different patients. It explores more advanced alternatives such as ACI and MACI, and discusses how cartilage repair has evolved beyond microfractureIs microfracture surgery still a viable option for cartilage repair in modern orthopedics? This article addresses common questions about microfracture surgery, including its limitations, long-term outcomes, and suitability for different patients. It explores more advanced alternatives such as ACI and MACI, and discusses how cartilage repair has evolved beyond microfracture surgery with regenerative medicine innovations. The article also questions the logic and effectiveness of relying on a bone healing response to repair cartilage. It concludes by emphasizing the importance of understanding microfracture surgery's limitations and considering patient-specific factors when choosing the most suitable treatment approach.
Rethinking Microfracture Surgery in Modern Orthopaedics: Perspectives for Cartilage Repair
avatar
Prof. Paul Lee
28/12/2023
Rethinking Microfracture Surgery in Modern Orthopaedics: Perspectives for Cartilage Repair
Discover the ongoing debate surrounding microfracture surgery as a technique for cartilage repair in orthopaedic medicine. As advanced methodologies emerge, such as Autologous Chondrocyte Implantation (ACI) and Matrix-Induced Autologous Chondrocyte Implantation (MACI), the relevance of microfracture comes under scrutiny. Although it may still be appropriate for patients with small cartilageDiscover the ongoing debate surrounding microfracture surgery as a technique for cartilage repair in orthopaedic medicine. As advanced methodologies emerge, such as Autologous Chondrocyte Implantation (ACI) and Matrix-Induced Autologous Chondrocyte Implantation (MACI), the relevance of microfracture comes under scrutiny. Although it may still be appropriate for patients with small cartilage defects, concerns over long-term efficacy and durability limit its applicability. With rapid advancements in regenerative medicine, stem cell therapies and scaffold-based approaches offer promising alternatives. Ultimately, patient-specific factors should guide the decision-making process, and ongoing research is necessary to define microfracture's role in modern orthopaedic surgery.
Microfracture in Cartilage Repair: Efficacy, Adverse Outcomes, and Clinical Controversies
avatar
Prof. Paul Lee
27/12/2023
Microfracture in Cartilage Repair: Efficacy, Adverse Outcomes, and Clinical Controversies
Microfracture Technique: Limitations and Concerns. This article discusses the limitations and potential adverse outcomes associated with the microfracture technique used for cartilage repair. Concerns include subchondral bone overgrowth, formation of less durable fibrocartilage instead of hyaline cartilage, and the lack of long-term durability. Other limitations include the technique's suitability forMicrofracture Technique: Limitations and Concerns. This article discusses the limitations and potential adverse outcomes associated with the microfracture technique used for cartilage repair. Concerns include subchondral bone overgrowth, formation of less durable fibrocartilage instead of hyaline cartilage, and the lack of long-term durability. Other limitations include the technique's suitability for large lesions, the formation of granulation tissue and subchondral cysts, and the need for extended rehabilitation. These factors raise concerns about the efficacy and long-term outcomes of microfracture as a sole treatment for cartilage defects.
8 results found in 5ms
  • ‹‹
  • 1
  • ››