Microfracture Doom to FailMicrofracture surgery, commonly used to repair damaged knee cartilage, is often questioned for its long-term success. This article explores why microfracture surgery fails and discusses alternatives for cartilage repair such as autologous chondrocyte implantation (ACI), mosaicplasty, and mesenchymal stromal cells. The limitations of microfracture surgery include the body's struggle to…Microfracture surgery, commonly used to repair damaged knee cartilage, is often questioned for its long-term success. This article explores why microfracture surgery fails and discusses alternatives for cartilage repair such as autologous chondrocyte implantation (ACI), mosaicplasty, and mesenchymal stromal cells. The limitations of microfracture surgery include the body's struggle to balance between durable healing and repeated injury, resulting in the breakdown of repair tissue over time. Additionally, the articular cartilage's limited capacity to heal leads to pain recurrence and post-traumatic arthritis. Long-term outcomes vary, with a risk of osteoarthritis progression in older patients. Alternatives like ACI and mosaicplasty show promise, although ACI has a high reoperation rate. Mesenchymal stromal cells are also being considered for enhancing cartilage repair.
Rethinking Microfracture Surgery in Modern Orthopaedics: Perspectives for Cartilage RepairDiscover the ongoing debate surrounding microfracture surgery as a technique for cartilage repair in orthopaedic medicine. As advanced methodologies emerge, such as Autologous Chondrocyte Implantation (ACI) and Matrix-Induced Autologous Chondrocyte Implantation (MACI), the relevance of microfracture comes under scrutiny. Although it may still be appropriate for patients with small cartilage…Discover the ongoing debate surrounding microfracture surgery as a technique for cartilage repair in orthopaedic medicine. As advanced methodologies emerge, such as Autologous Chondrocyte Implantation (ACI) and Matrix-Induced Autologous Chondrocyte Implantation (MACI), the relevance of microfracture comes under scrutiny. Although it may still be appropriate for patients with small cartilage defects, concerns over long-term efficacy and durability limit its applicability. With rapid advancements in regenerative medicine, stem cell therapies and scaffold-based approaches offer promising alternatives. Ultimately, patient-specific factors should guide the decision-making process, and ongoing research is necessary to define microfracture's role in modern orthopaedic surgery.
The Importance of Custom Rotational Alignment in Knee ReplacementExplore the critical role of the medial collateral ligament (MCL) and patella in knee replacement surgery using custom rotational alignment. This personalised approach, like the TWIS-TKR method, promises better biomechanical outcomes and increased longevity of knee implants. By precisely aligning the replacement to the patient's natural joint alignment, it reduces…Explore the critical role of the medial collateral ligament (MCL) and patella in knee replacement surgery using custom rotational alignment. This personalised approach, like the TWIS-TKR method, promises better biomechanical outcomes and increased longevity of knee implants. By precisely aligning the replacement to the patient's natural joint alignment, it reduces stress on the MCL and enhances patellar tracking function. This leads to smoother kneecap glide and less chance of complications. Besides relieving pain, this advancement in surgery ultimately aims to restore the knee's natural functionality and movement. The right candidate can potentially extend the life and functionality of their knee replacement, enhancing quality of life.